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We investigate the critical behavior of the two-dimensional randomly driven lattice gas, in which particles
are driven along one of the lattice axes by an infinite external field with randomly changing sign. A finite-size
scaling �FSS� analysis provides novel evidences that this model is not in the same universality class as the
driven lattice gas with a constant drive �DLG�, contrarily to what has been recently reported in the literature.
Indeed, the FSS functions of transverse observables �i.e., related to order-parameter fluctuations with wave
vector perpendicular to the direction of the field� differ from the mean-field behavior—both predicted and
observed in the DLG. In sharp contrast to the case of the DLG, FSS can be established only for rectangular
lattices where the dimension in the direction of the field grows as the second power of the other dimension.
Further, the transverse Binder cumulant does not vanish at the critical point.
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I. INTRODUCTION

Phase transitions are characterized by a drastic change in
the macroscopic behavior of many-body interacting systems
when control parameters are varied. In the case of critical
phenomena the onset of the ordered phase is accompanied by
fluctuations on all length scales. In spite of the difficulties in
accounting efficiently for such coupled fluctuations, we have
currently a deep and detailed understanding of the collective
behavior of a large class of systems in thermal equilibrium
thanks to a variety of results and methods, both analytical
and numerical. Critical collective behaviors, on the other
hand, are also observed in the steady states of systems far
from thermal equilibrium �1�. In contrast to equilibrium
cases, the stationary probability distribution is not known a
priori and the possible occurrence and nature of a phase
transition can no longer be determined by usual entropy-
energy arguments. The absence of detailed balance, the ge-
neric algebraic decay of space-dependent correlations as
functions of the distance, their strongly anisotropic scaling
properties, and the flux of particles or energy through the
system are among the general features which make these
problems particularly difficult and rich in phenomenology.
Because of the lack of a general framework, it is still worth
focusing on specific toy models in order to gain insight
which might possibly lead to a more comprehensive theory.

Among the models characterized by nonequilibrium
steady states the simplest is the uniformly driven lattice gas
�2� �DLG�, a generalization of the Ising model to nonequi-
librium conditions due to the action of an external noncon-
servative force, inducing a particle current through the sys-
tem. Although the DLG was introduced more than 20 years
ago, there is still room for debate on the nature and proper-
ties �in particular, the universality class� of the nonequilib-
rium critical behavior observed upon changing the tempera-
ture. At first, the relevant feature of the model was assumed
to be the presence of a particle current �3�. However, more

recently, this point has been criticized by arguing that the
strong anisotropy is, instead, its qualifying character �4,5�. In
addition to the theoretical debate �6�, seemingly contradic-
tory evidences are also coming from Monte Carlo �MC�
simulations �5,7–9�.

The Ising model can be driven to nonequilibrium condi-
tions also by the coupling to two thermal baths at different
temperatures �10�, controlling the hopping rates of the par-
ticles in different lattice directions. In a simpler version, the
temperature affecting the jumps in one direction is taken to
be infinite. Hereafter we will refer to this direction as the
longitudinal one ��� whereas we refer to the remaining as
transverse ones ���. This model is equivalent to a DLG in
which the microscopic external driving force is along the
longitudinal direction, with infinite modulus and a sign that
is randomly chosen for each lattice site every time step �an-
nealed randomness�. The resulting model is called the ran-
domly driven lattice gas �RDLG� �11�. Unlike the DLG, no
net particle current is flowing through the system. MC
simulations �12� indicate that in the RDLG transverse fluc-
tuations of the order parameter �i.e., the fluctuations with
wave vector in the transverse direction� are not effectively
described by a Gaussian model. Indeed, in two dimensions,
the case we shall consider from now on, MC simulations
give ��=0.62�3� and �=0.13�4� �12�. These estimates
rely on a field-theoretical result for the anisotropy exponent
����� /���−1, i.e., �=1−� /2�1 �11� which enters the
finite-size scaling �FSS� Ansätze used to extract critical ex-
ponents. In Ref. �5� the numerical data for the RDLG and the
DLG on the same finite lattices have been compared. Ac-
cording to these data the two models have the same finite-
size scaling �FSS� behavior. If true, this implies that they
belong to the same universality class and thus the strong
anisotropy and not the particle current is the relevant feature
in determining the leading critical behavior of driven diffu-
sive systems. The same conclusions has been drawn in Ref.
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�7� by studying the short-time dynamics, although some
points of the analysis therein remain unclear �13�. Here
we reconsider the problem presenting the results of a new
series of MC simulations of the RDLG. The critical behavior
of the system �proper of the thermodynamic limit� is ex-
tracted from data on finite lattices by means of a FSS analy-
sis that does not require free parameters �14�, in contrast with
that previously employed �15�.

II. THE MODEL

We briefly recall the definition of the RDLG. Consider a
rectangular lattice and for each site x introduce an occupation
variable nx, which can be either zero �empty site� or one
�occupied site�. The external field E is acting along the lon-
gitudinal direction but with random sign. The dynamics
of the model is of Kawasaki type: A lattice link �xy	 is ran-
domly chosen, and, if nx�ny, a particle jump is proposed
and then accepted with Metropolis probability w���H
+�E��, where �= �1,0 ,−1� for jumps �along, transverse, op-
posite� to E, w�x�=min�1,e−x�, and �H is the variation of the
standard lattice-gas nearest-neighbor attractive interaction
H=−4
�xy	nxny due to the proposed jump. The parameter �

plays the role of an inverse temperature. In the DLG, E is
constant and time-independent. Periodic boundary conditions
in the direction of E make it a nonconservative field and
drive the system into a nonequilibrium stationary state. Al-
though the boundary conditions are not so relevant in the
RDLG, we will assume them periodic in all directions.

At half filling, the RDLG undergoes a second-order phase
transition. Indeed, at high temperatures the steady state is
disordered whereas at low temperatures the system orders:
The particles condense forming a strip with interfaces paral-
lel to E. These two phases are separated by a phase transition
occurring at the critical value �c�E� depending on the field E.
Here we will concentrate on the particular case in which E is
infinite.

III. FINITE-SIZE SCALING ANALYSIS

For a strongly anisotropic system in d dimensions,
with finite size L� �L�

d−1, the FSS limit corresponds to
t�1−� /�c→0 �where �c is the bulk critical temperature�,
L� ,L�→�, keeping fixed both combinations tL�

1/�� and
tL�

1/��, and therefore also the so-called “aspect ratio”
S�=L�

1/�1+�� /L� �16�. Accordingly, the FSS analysis of nu-
merical data generally requires an a priori knowledge of the
exponent � �17�. It would be a real step towards a better
understanding of nonequilibrium phase transitions to have
FSS in a form suitable for these systems, reliable and pow-
erful enough to disentangle those key features which might
be buried in tiny differences when the volume of the samples
is increased. In this direction we have already performed a
detailed study of the FSS of the DLG �9� by using the gen-
eral strategy introduced in Ref. �14�, confirming the mean-
field behavior of transverse fluctuations, with �=2, in agree-
ment with the predictions of Ref. �3�. It is therefore a crucial
test to examine by the same method also the RDLG. For
previous studies of FSS in strongly anisotropic systems see

Refs. �15,16�. We will show that the method is sensitive
enough to highlight the differences in the critical behavior
of the DLG and RDLG �contrarily to the claims in Ref. �18��,
to an extent that goes beyond the numerical differences
in the critical exponents and probes the spatial structure of
correlations.

In spite of the generic power-law decay of the two-point
correlation function �nxn0	 for large x �12�, it is possible
to define a finite-volume correlation length �9�. Given
the Fourier transform G�q� of �nxn0	, one considers
G��q��G��q� =0,q�=q�� and defines the correlation length

�L � 1

q̂3
2 − q̂1

2�G��q1�
G��q3�

− 1� , �1�

where q̂n=2 sin qn /2 is the lattice momentum and
qn=2�n /L�. Hereafter we will denote L� simply by L.

In Fig. 1 we report the FSS plot of the ratio �2L /�L, where
�2L and �L are computed at the same temperature but lattice
sizes 2L and L, respectively, keeping constant the aspect ra-
tio with �=2, i.e., S2�0.200 �19�. For comparison we report
as a solid line the mean-field prediction which is approached
by the DLG data on larger lattices �9�. In the present case,
deviations from the mean-field behavior increase with in-
creasing lattice sizes. Note that, if S1 is the correct aspect
ratio for the model, then one observes the crossover towards
the FSS of the model in the strip geometry L�=�, when
keeping S2 constant and �L /L fixed �17�. Accordingly, the
points corresponding to larger lattices in Fig. 1 eventually
accumulate on some limiting curve as L increases, in agree-
ment with the predictions �20� based on the field-theoretical
model of Ref. �11�.

Figure 2 refers to geometries with �=1, i.e., S1�0.223
�upper set of points� and S1�0.326 �lower set�. Note that we

FIG. 1. FSS plot of the transverse correlation length �L in the
two-dimensional RDLG with fixed S2�0.200. Crosses, circles,
squares, triangles, diamonds, and stars correspond to lattices of in-
creasing size L=14,16,18,20,22,24. The Gaussian behavior ap-
proached by the DLG is given by the solid line.
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used �=1, although a correction of the order of � /2 to this
value is expected. In these cases we have been able to reach
L=88. In contrast with the mean-field behavior, which does
not depend on the specific value of S�, now we do expect a
dependence of the FSS curves on the actual value of S1. The
critical properties can be extracted from the previous plot as
follows. For a given S1, consider the scaling function
�2L /�L=F�z� as a functions of z=�L /L and expand it around
z*, which is defined as the point such that F�z*�=2, i.e., as
the value of �L /L at the critical temperature. Denoting
	z=z−z*, one finds �9�

F�z� = F�z*� + F��z*�	z + O��	z�2�

= 2 +
2

z* �21/�� − 1�	z + O��	z�2� . �2�

A linear fit of our data gives z*=0.1337�3� for S1=0.223 and
z*=0.1594�1� for S1=0.326, with the same

�� = 0.61�3� . �3�

The corresponding critical temperature is the same in the two
cases. Note that z* for S1=0.326 is almost equal to the mean-
field value 1/ �2�� �9�. Indeed, we had chosen this value of
S1 in order to be very close to the mean-field predictions and
test whether the FSS method employed is able to detect the
differences. These results suggest that unlike the DLG,
where mean-field scaling at fixed S2 is observed, in the
present case scaling is attained only at fixed S1 and is not
compatible with mean-field behavior. Indeed, not only does
z* depend on the geometry, but also the critical exponent ��

differs from the Gaussian value 1/2. The qualitative depen-
dence of z* on S1 is accounted for �20� by the field-
theoretical model of Ref. �11�. A similar analysis, with

similar results, has been performed for the susceptibility

L�G��q1� �20�. We find more instructive to present data
for the ratio AL��L

2 /
L, which is independent of �L /L �for L
large enough� whenever the critical exponent � vanishes.

In Fig. 3 we present the FSS data of this observable, for
the two values of S1 previously considered. In contrast to the
DLG, where we got A2L /AL�1, here we see a pronounced
and systematic dependence on �L /L and on the actual value
of S1. For the two different values of z*�S1� we do find the
same value for A2L /AL�1.05, which is equal to 2� �9� and
leads to the estimate

� = 0.07�1� . �4�

Further evidence of differences in the critical behavior of the
DLG and of the RDLG is provided by the transverse Binder

FIG. 4. FSS plot of the transverse Binder cumulant gL in the
two-dimensional RDLG with fixed S1=0.223 �upper set of points�
and S1=0.326 �lower set�. Symbols are as in Fig. 2.

FIG. 2. FSS plot of the transverse correlation length �L in the
two-dimensional RDLG with fixed S1=0.223 �upper set of points�
and S1=0.326 �lower set�. Empty squares, empty triangles, dia-
monds, crosses, full circles, full squares, full upright triangles, and
full downright triangles correspond to lattices of increasing size
L=20,22,24,28,32,36,40,44.

FIG. 3. FSS plot of the ratio �L
2 /
L in the two-dimensional

RDLG with fixed S1=0.223 �upper set of points� and 0.326 �lower
set�. Symbols are as in Fig. 2.
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cumulant gL�−G
�

�4��q1 ,q1 ,−q1 ,−q1� / �NLG�
2 �q1��, where

G
�

�4� is the Fourier transform of the four-point connected cor-
relation function at a given � and lattice geometry, computed
at the first allowed transverse momentum q1, and NL is the
total number of spins in the lattice. The FSS plot in Fig. 4
shows clearly that for both the values of S1 considered,
g2L /gL�1 at the corresponding z*�S1�. Therefore, gL at the
critical point does not vanish in the thermodynamic limit, at
variance with what has been found for the DLG �9�. The
estimated values of the critical exponents �see Eqs. �3� and
�4�� are in good agreement with previous numerical findings
�although our result for � is smaller than that reported in Ref.
�12�� and theoretical estimates based on the field-theoretical
model of Ref. �11�. Moreover, the universal FSS functions
for the correlation length agree with those computed in field
theory at first order in an � expansion around the upper criti-
cal dimension d=3 �20�.

IV. CONCLUSIONS

We have shown that the FSS approach as devised in Ref.
�14� is sensitive enough to distinguish clearly between the

critical behavior of the DLG and of the RDLG, two systems
which in particular geometries may exhibit quite similar be-
havior for relatively small volumes and not too close to the
critical temperature. Therefore, on one side we have a
sound numerical method to examine also nonequilibrium
critical phenomena, on the other we have eventually
established that the key features of these two models are
different, as they do not belong to the same universality
class. The agreement with the field-theoretical analysis of
Refs. �3,11,12� suggests that indeed the leading critical be-
havior of the DLG is governed by the presence of a particle
current whereas that one of the RDLG is dominated by
strong anisotropy.

ACKNOWLEDGMENTS

The authors are grateful to R. K. P. Zia for useful discus-
sions and comments.

�1� B. Schmittmann and R. K. P. Zia, in Phase Transitions and
Critical Phenomena, edited by C. Domb and J. L. Lebowitz
�Academic Press, London, 1995�, Vol. 17; J. Marro and R.
Dickman, Nonequilibrium Phase Transitions in Lattice Models
�Cambridge University Press, Cambridge, 1999�.

�2� S. Katz, J. L. Lebowitz, and H. Spohn, Phys. Rev. B 28, 1655
�1983�; J. Stat. Phys. 34, 497 �1984�.

�3� H. K. Janssen and B. Schmittmann, Z. Phys. B: Condens.
Matter 64, 503 �1986�; K.-t. Leung and J. L. Cardy, J. Stat.
Phys. 44, 567 �1986�; 45, 1087�E� �1986�.

�4� P. L. Garrido, F. de los Santos, and M. A. Muñoz, Phys. Rev. E
57, 752 �1998�; P. L. Garrido and F. de los Santos, J. Stat.
Phys. 96, 303 �1999�; P. L. Garrido, M. A. Muñoz and F. de
los Santos, Phys. Rev. E 61, R4683 �2000�.

�5� A. Achahbar, P. L. Garrido, J. Marro, and M. A. Muñoz, Phys.
Rev. Lett. 87, 195702 �2001�.

�6� B. Schmittmann, H. K. Janssen, U. C. Täuber, R. K. P. Zia,
K.-t. Leung, and J. L. Cardy, Phys. Rev. E 61, 5977 �2000�.

�7� E. V. Albano and G. Saracco, Phys. Rev. Lett. 88, 145701
�2002�; J. Chem. Phys. 118, 4157 �2003�.

�8� H. K. Lee and Y. Okabe, J. Phys. A 38, L241 �2005�.
�9� S. Caracciolo, A. Gambassi, M. Gubinelli, and A. Pelissetto, J.

Phys. A 36, L315 �2003�; J. Stat. Phys. 115, 281 �2004�.
�10� P. L. Garrido, J. L. Lebowitz, C. Maes, and H. Spohn, Phys.

Rev. A 42, 1954 �1990�.

�11� B. Schmittmann and R. K. P. Zia, Phys. Rev. Lett. 66, 357
�1991�; B. Schmittmann, Europhys. Lett. 24, 109 �1993�.

�12� E. L. Præstgaard, H. Larsen, and R. K. P. Zia, Europhys. Lett.
25, 447 �1994�; E. L. Præstgaard, B. Schmittmann and R. K. P.
Zia, Eur. Phys. J. B 18, 675 �2000�.

�13� S. Caracciolo, A. Gambassi, M. Gubinelli, and A. Pelissetto,
Phys. Rev. Lett. 92, 029601 �2004�.

�14� S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, and
A. D. Sokal, Phys. Rev. Lett. 74, 2969 �1995�; S. Caracciolo,
R. G. Edwards, A. Pelissetto, and A. D. Sokal, ibid. 75, 1891
�1995�.

�15� K.-t. Leung, Int. J. Mod. Phys. C 3, 367 �1992�.
�16� K. Binder and J. S. Wang, J. Stat. Phys. 55, 87 �1989�.
�17� The effects of using different �’s in the FSS is discussed in S.

Caracciolo, A. Gambassi, M. Gubinelli, and A. Pelissetto, Eur.
Phys. J. B 34, 205 �2003�.

�18� E. V. Albano, J. Phys. A 37, 8189 �2004�; see also the reply S.
Caracciolo, A. Gambassi, M. Gubinelli, and A. Pelissetto, ibid.
37, 8193 �2004�.

�19� The subtleties of the definition of a finite-volume correlation
length to be used in FSS in the presence of a conserved order
parameter are discussed in S. Caracciolo, A. Gambassi, M.
Gubinelli, and A. Pelissetto, Eur. Phys. J. B 20, 255 �2001�.

�20� S. Caracciolo, A. Gambassi, M. Gubinelli, and A. Pelissetto
�unpublished�.

CARACCIOLO et al. PHYSICAL REVIEW E 72, 056111 �2005�

056111-4


